If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(9x^2+6x+1)=(3x+1)(x-3)
We move all terms to the left:
(9x^2+6x+1)-((3x+1)(x-3))=0
We get rid of parentheses
9x^2+6x-((3x+1)(x-3))+1=0
We multiply parentheses ..
9x^2-((+3x^2-9x+x-3))+6x+1=0
We calculate terms in parentheses: -((+3x^2-9x+x-3)), so:We add all the numbers together, and all the variables
(+3x^2-9x+x-3)
We get rid of parentheses
3x^2-9x+x-3
We add all the numbers together, and all the variables
3x^2-8x-3
Back to the equation:
-(3x^2-8x-3)
9x^2+6x-(3x^2-8x-3)+1=0
We get rid of parentheses
9x^2-3x^2+6x+8x+3+1=0
We add all the numbers together, and all the variables
6x^2+14x+4=0
a = 6; b = 14; c = +4;
Δ = b2-4ac
Δ = 142-4·6·4
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-10}{2*6}=\frac{-24}{12} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+10}{2*6}=\frac{-4}{12} =-1/3 $
| 2(3^x-3^(x-1))=324 | | (t^2-t)/(2)=45 | | 2(3x-3x-1)=324 | | x)=3x^2-2x+1 | | F(x)=2x-1/3x+4 | | -1/7+y=-2/3 | | 1.6x-12=74 | | 74=1.6x-12 | | (k+2/6)+(k-3/10)=(k+3/6) | | -x–5=13–2x | | 33/x+4=15 | | 4x+50=6x+25 | | X3-6x2+11x-6=0 | | 5(x-3)+27=57 | | x2-12X+12*70=0 | | 4x+(3+2x)=27 | | -16t^2+88t-72=0 | | (10*2)+2y-14=0 | | 12=8x+(-30) | | (8^(x))*4^(2x-3)=16^(2x) | | (X+1)+(x-1)=10 | | 8x*42x-3=162x | | 12=5x+(3x+30) | | 12(4x-25)-(32x-124)=0 | | 6/x+4/x+5=8/x | | 4x=48−4x | | 2x7=7+7= | | 2x7=7+7 | | 8-4y=9-6y | | x+1.5x=210 | | 6-9x=8x+1 | | 4t=5-3t=20 |